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A study was made of the effect of nonequilibrium phase transformations on the 
dynamics of vapor bubbles with the sudden occurrence of a pressure drop, 

Vapor-liquid mixtures are most commonly used as heat-transfer agents in heat and power 
engineering and nuclear power plants. This accounts for the considerable interest in the 
study of the structure of two-phase vapor-liquid flows with different flow regimes [i, 2], 
the generation of shock waves [3, 4] and rarefaction waves in channeis [5], and the effect 
of liquid-vapor phase transformations accompanying these processes on the structure and 
properties of the entire system. 

Since the properties of two-phase gas-liquid systems differ appreciably from the proper- 
ties of pure liquids and vapors and depend to a large extent on the dynamics of the vapor or 
gas bubbles present, then determination of the gas dynamic parameters in each phase of a 
gas-liquid mixture requires study of the dynamics of the bubbles, i.e., of their behavior 
with a change in the external parameters of the system. It is also necessary to study the 
interaction of bubbles with the surrounding liquid. Several studies [2-10] have offered a 
systematic survey of the results of theoretical investigations of the dynamics of spherical 
and nonspherical gas bubbles in a liquid in relation to the type of effects (inertial, ther- 
mal, or diffusive) that are predominant. The studies [2-7] were devoted to numerical inves- 
tigation of the interaction of a gas bubble with a liquid. Allowing for phase transforma- 
tions with oscillations of vapor bubbles complicates the Solution of the problem even if it 
is assumed that the parameters inside the bubble are uniform [6, 7, 11-13]. The studies 
[12, 13] presented results of a numerical analysis of the dynamics of a spherical vapor bub- 
ble in water with the assumption that pressure inside the bubble was uniform. The authors 
used a finite-difference approximation of the problem to reduce it to a system of ordinary 
differential equations. The Runge-Kutta method was used to obtain a solution. 

Here, we study cavitation processes occurring in a liquid when there is a pressure drop 
in it. Such processes take place in pipes filled with a liquid heat-carrier when the pipe 
is depressurized. We will make the usual assumptions employed in studying the dynamics of 
a single bubble: spherical symmetry is maintained, the density of the vapor at each point 
corresponds to its temperature at the given pressure in accordance with the equation of 
state P = Apu The system consists of the equations of energy, continuity, and motion for 
the vapor and liquid phases [6, 13]: 
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The velocities of the bubble boundary dR/dt and the mass velocities of the phase at 
this boundary are connected by the relations: 
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The equations expressing the change in the mass and density of the bubble have the form: 
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System (i-i0) is solved with the following initial and boundary conditions: 

t = 0 :  P .  = P~o, Po = Pro, R = Ro, W l =  Wzo, To = Tz = To, Pl = Pro, 
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T~= T t =  Ts(P,), r = R. (15) 
The problem was solved in spherical coordinates in the varibles ~ = r/R(t), t~ For 

convenience in calculating the internal and external problem, we introduce the new variable 

~, ~ I ,  
x =  2 1 ~ j ~ l  

The method of calculation is as follows: At the initial moment of time, it is assumed 
that the liquid-vapor-bubble system is in equilibrium, and equilibrium values of all func- 
tions of system (ii) are assigned for the given temperature and pressure. The pressure 
gradient (Pv - Po) is assigned and we use an explicit scheme with a half time step to calcu- 
late values of temperature T (I/2) at all specified coordinate points. The values of Ti (I/2) 
are used to calculate Pv, Pv, R, and W~ and their time derivatives on the "half" time layer. 
These values are then used to calculate the main parameters on the next integral time layer. 
Meanwhile, the temperature T on the integral layer is calculated by an implicit scheme. To 
check the integration on each time layer, we assign an error EPS < 1% for recalculation of 
the main parameters Pv, R, Pv, and W~ by the "rough" scheme (i.e., with calculation of the 
parameters by an explicit scheme with an integral time step) and the working schemes on one 
time layer. The step of the time grid should be changed if EPS > 1%. To calculate the 
saturation temperature and the heat of phase transformation at the given pressure, we used 
the interpolation formulas [14]: 

Ts(P) = l / ( arln-~o + BT ) , 

l ( P ) = l o e x p [ ( a p +  bpln p - ~ ) l n ~ o  ] . 

The coefficients aT, BT, a p, bp are calculated for specified tabular values. 

As the test substance for the calculations, we used nitrogen tetroxide. 
its parameters were taken from [15]. 

The values of 
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Fig. i. Dependence of the dimensionless radius of a vapor 
bubble on time at the temperature T = 300 K for a pressure 
drop in the liquid from P0 to Ps i) P0 = 1.5"106 Pa; P~ = 
1.106 Pa; 2) 1"106 and 0.5.106; 3) i.i0 s and 0.8"10s; 4) 
1.106 and i.i0 s. T, sec. 

Fig. 2. Velocity profile inside the bubble at To = 300 K 
and pressure drops from 106 to 5.10 s Pa at different moments 
of time: i) �9 = 0.25"10 -4 sec; 2) 0.5.10-~; 3) 0.75-i0-~; 
4) 0.i-I0 -~ sec. Ws m/sec. 

We performed calculations of the cavitational process occurring with an instantaneous 
pressure drop in a liquid far from a bubble from P0 to Ps which corresponds to the case 
of the depressurization of a pipe filled with a heat carrier at P0 in a vacuum with the 
pressure P~. Figure 1 shows the behavior of a vapor bubble with an initial radius R 0 = 
0.001 m in liquid nitrogen tetroxide N204 heated to below the boiling point (To = 300 K) 
for different pressure drops. It is evident that for cavitation to occur, not only is the 
pressure drop from Pv to Ps important, but so is the initial value Pv. A lower initial 
value Pv leads to growth of the vapor bubble with a pressure drop even of 0.2.105 Pa when 
Pv = 1"105 Pa (curve 3), while an initial value Pv = I'i0~ Pa requires a pressure drop of 
almost one order (curves 1 and 4) for cavitation to occur. High values of Pv with an 
insufficiently large pressure drop lead to collapse of the vapor bubbles (curves 1 and 2). 
The energy released with collapse of the bubbles may either be dissipated due to the vis- 
cosity and thermal conductivity of the liquid or may be converted into the kinetic energy 
of the liquid. Calculations performed for different temperatures and pressure drops show 
that an increase in the initial temperature of the system significantly intensifies the 
development of cavitation (with an identical pressure drop). Pulsations of the vapor bub- 
ble are one consequence of the vaporization and condensation occurring inside it. The pul- 
sations stop after an equilibrium value Pv = P~ + 2o/R is established. Here, the bubble 
then either grows monotonically or, if the equilibrium value of the radius becomes less 
than a certain critical value Rcr , it collapses. Given the same pressure drop, an increase 
in the initial temperature of the process lengthens the time interval during which the 
bubble pulsates. The intensity of these oscillations depends on the initial size of the 
bubble. Small bubbles (R0 < 0.001 m) are characterized by monotonic growth, while both the 
intensity and duration of the pulsations increase with an increase in the initial size of 
the bubble. 

Calculations were performed in the temperature range 300-333 K. Experimental data for 
nitrogen tetroxide is available in this range. The measurement methodology and some results 
were presented in [5, 16, 17]. The occurrence of cavitation processes in a pipe when it 
undergoes depressurization in a vacuum can be detected both from oscillograms showing the 
change in the system pressure and from the change in and the intensity of monochromatic 
light passing through the vapor--liquid medium. The growth of cavitati0nal bubbles leads to 
an increase in the volume of the vapor phase in the vapor-liquid medium, and this in turn 
increases the intensity of the light passing through the medium. Calculated dePendence s 
of the change in vapor pressure Pv and bubble radius R on time agree qualitatively with ex- 
perimental oscillograms recorded with the same initial temperatures and identical values of 
pressure drop. 
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Fig. 3. Change in the mass velocity of the liquid over time 
at the bubble boundary with T o = 300 K and a pressure drop 
from 106 to 5"105 Pa. 

Fig. 4. Profile of the temperature of a pulsating vapor bub- 
ble with an initial temperature T o = 318 K and a pressure 
drop from 1.5-106 Pa to 1.106 Pa at different moments of 
time: i) T = 0.5.10 -3 sec; 2) 0.1.10 -2 sec; with a pressure 
drop from 106 to 5"105 Pa: 3) m=0.5"10 -3 sec; withapressure 
drop from i06 to 8.10 ~ Pa: 4) T = 0.5.10 -3 sec; 5) 0.1-10-2; 
6) 0.2.10 -2 sec. T, K. 

Heat transfer is most intense in the immediate vicinity of the boundary of the vapor 
bubble as it oscillates. Figure 2 shows the profile of velocity V v inside the vapor bubble 
at T o = 300 K with a pressure drop from Pv = 106 to Pg = 5-105 Pa. It is evident that the 
intensity of the processes occurring at the center of the bubble is considerably lower than 
at its boundary (the boundary corresponds to $ = i). 

Due to the intensive occurrence of phase transformations between the liquid and vapor 
phases at and near the boundary of the bubble, the change in the mass velocity of the phases 
at the boundary is oscillatory in character. The amplitude of the oscillations gradually 
decreases until equilibrium is established. Figure 3 shows the dependence of the mass 
velocity of the liquid at the bubble boundary on time at To = 300 K and with a pressure 
drop from i06 to 5.105 Pa. 

The change in the temperature of the vapor inside the bubble during its pulsations 
depends heavily on the initial temperature To, the initial vapor pressure Pv, and the pres- 
sure drop. Figure 4 shows temperature profiles of a pulsating vapor bubble for T o = 318 K 
and different values of pressure drop at certain moments of time. Comparison of curves i, 3, 
and 4, calculated for t = 0.5"10 -3 sec, shows that they all have jumps near the boundary of 
the bubble. However, the forms of these curves differ for high and low initial pressures Pv" 
The same conclusion can be reached by comparing curves 2 and 5 for t = 0.1.10 -2 sec. 

The completed calculations show that the dynamics of cavitational processes are heavily 
dependent on heat transfer in the two-phase vapor-liquid mixture in the presence of liquid- 
vapor phase transformations. The results of the calculations make it possible to predict 
the behavior of cavitation bubbles in a pipe filled with a heat carrier undergoing depres- 
surization in a vacuum. 

NOTATION 

Cpv, Cg, specific heat capacities (at constant pressure) of the vapor and liquid; Pv, 
pg, densities; Tv, Tg, temperatures; Vv, Vg, velocities; Pv, Pg, pressures; Wv, Wg, mass 
velocities on the bubble surface; Xv, Xg, thermal conductivities of the vapor and liquid; 
y, adiabatic exponent of the vapor; o, surface tension; v, kinematic viscosity; j, rate of 
phase transformations; m, mass; g, heat of phase transformation. Indices: v, vapor phase; 
g, liquid phase. 
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TOWARD A THEORY OF TRANSPORT IN HETEROGENEOUS MEDIA 

Yu. A. Buevich UDC 536.242:532.546 

A unified equation is obtained for description of nonsteady state heat and 
mass transport in two-phase heterogeneous media in the low- and high-frequen- 
cy approximations. Heating of a granular bed by a solid wall is considered 
as an example. 

i. The basis of the traditional method of describing heat and mass transport processes 
in disperse and other heterogeneous materials is a system of equations for moderate tempera- 
tures or impurity concentrations in the individual phases, which consider interphase heat 
and mass exchange. Such equations are usually derived by the use of semiempirical relation- 
ships [1-3], although their general structure has been confirmed by results of a stricter 
analysis [4, 5]. We will write this system for heat transport in situations where convec- 
tive and dispersive transport is significant for only one (continuous) phase: (o ) edge, ~ + uv TI=L.ATI - -~ (T1- -T~) ,  

(1) 
(1 -- g) d2c2 ~ = ~ (7" 1 Tz). 
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